Competitive Learning Algorithms in Adaptive Educational Toys
نویسنده
چکیده
Unsupervised neural learning is typically employed in dimensionality reduction, to extract relevant features for subsequent stages of supervised learning. In this paper we examine a class of unsupervised learning algorithms used for a somewhat different purpose, that of clustering input vectors into various learned stereotyped behaviours in mobile robots [1] . Unsupervised techniques have significant advantages in such applications given their ability to continuously and autonomously adapt to a changing operating environment. While supervised algorithms require a set of labelled training data, the unsupervised techniques evolve input-output mappings based entirely on the input data which may be acquired from the environment in real-time.
منابع مشابه
Teaching Humanoid Robots like Children: Explorations into the World of Toys and Learning Activities
The goal of this work is to develop a humanoid robot’s perceptual system through the use of learning aids. We describe methods to enable learning on a humanoid robot using learning aids such as books, drawing materials, boards, educational videos or other children toys. Visual properties of objects are learned and inserted into a recognition scheme, which is then applied to acquire new object r...
متن کاملINTEGRATED ADAPTIVE FUZZY CLUSTERING (IAFC) NEURAL NETWORKS USING FUZZY LEARNING RULES
The proposed IAFC neural networks have both stability and plasticity because theyuse a control structure similar to that of the ART-1(Adaptive Resonance Theory) neural network.The unsupervised IAFC neural network is the unsupervised neural network which uses the fuzzyleaky learning rule. This fuzzy leaky learning rule controls the updating amounts by fuzzymembership values. The supervised IAFC ...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملHybrid Adaptive Educational Hypermedia Recommender Accommodating User’s Learning Style and Web Page Features
Personalized recommenders have proved to be of use as a solution to reduce the information overload problem. Especially in Adaptive Hypermedia System, a recommender is the main module that delivers suitable learning objects to learners. Recommenders suffer from the cold-start and the sparsity problems. Furthermore, obtaining learner’s preferences is cumbersome. Most studies have only focused...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997